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Model predictive control (MPC) is a promising optimal control technique for activating building energy flexi-
bility using its thermal mass. The performance of the MPC controller is directly related to the accuracy of the
model prediction. Grey-box models, based on physical laws and calibrated on measurement data, are commonly
used to represent the building thermal dynamics in MPC. Most research works use Linear Time-Invariant (LTI)
grey-box models even though weather conditions vary significantly throughout the heating season. This is critical
as inaccurate model prediction can lead to a lower performance of the MPC controller. This study introduces two
adaptive MPC schemes to overcome this limitation of LTI models. The first one, called the Partially Adaptive
MPC, only updates the effective window area of the prediction model. The second one, called the Fully Adaptive
MPC, updates all the parameters of the grey-box model. The adaptive MPC performance is compared with MPC
using LTI models in two different tests. The simulation-based results show that MPC based on LTI performs well if
the control model is trained during a period with similar weather conditions as the period when the MPC will be
applied. The Partially Adaptive MPC is unable to deliver satisfactory prediction performance due to the limited
number of parameters that are updated. The Fully Adaptive MPC has the best performance compared to the other
MPCs, especially as it avoids thermal comfort violations.

To store heat, the indoor temperature fluctuates between appropriate

1. Introduction

The penetration of renewable energy sources (RES) in the energy
system is increasing fast. However, RES is weather-dependent and un-
certain, which brings challenges to the grid when balancing supply and
demand. Therefore, more flexible energy solutions are needed for the
future energy system. Demand response (DR) is considered a solution on
the demand side to balance the volatility of electricity generation [1,2].
The definition of building energy flexibility given by the IEA EBC Annex
67 is closely related to DR, which is the ability of a building to manage
its demand and generation according to local climate conditions, user
needs and grid requirements [3]. A significant proportion (20-40%) of
the final energy consumption is consumed by buildings in developed
countries [4]. The large thermal mass of a building can be used as
short-term heat storage, making it a suitable candidate to perform DR.

temperature limits that preserve the occupant’s thermal comfort. Model
predictive control (MPC) is a promising technique for performing DR in
buildings. Numerous studies have addressed the potential of MPC to
provide flexibility to the grid from the building thermal mass, see e.g.
Refs. [5-11]. As the quality of the prediction model has a considerable
impact on the control performance, developing an appropriate predic-
tion model is the prerequisite for MPC deployment.

According to the availability of explicit models, the mathematical
modeling of a dynamic system has three main categories, namely white-
box, black-box, and grey-box models. White-box models are based on
physical laws and have high prediction accuracy. However, white-box
models have high mathematical complexity, and their calibration is
time-consuming. Black-box models are purely data-driven based on
time-series measurements from a system. Both a sufficient amount and
quality of training data are needed to ensure the quality of the model.
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Nomenclature

RES Renewable Energy Sources

DR Demand Response

MPC Model Predictive Control

BPS Building Performance Simulation
RC Resistance and Capacitance

LTI Linear Time-Invariant

PID Proportional Integral Derivative
PSO Particle Swarm Optimization
ACS Anti-Causal Shift

PLR Part Load Ratio

HTC Heat Transfer Coefficient

PRBS Pseudo-Random Binary Signal

Grey-box models are a combination of white-box and black-box models.
The model structure of grey-box models is constructed with the domi-
nant physical processes of the system and measurement data are used to
calibrate the model parameters. In the building automation field, lum-
ped resistance and capacitance models (RC networks) are commonly
used to represent the heat dynamics of a building. Grey-box models have
better extrapolation properties than black-box models [12,13] and
require less experimental data in most cases [14].

Existing research has demonstrated that linear time-invariant (LTI)
models can approximate the heat dynamics of buildings with sufficient
accuracy for MPC [15-19]. However, it remains unclear whether an LTI
grey-box model trained from one period is able to provide decent pre-
diction in another period due to time-varying weather conditions
throughout the year. The performance of the MPC controller cannot be
guaranteed when using an LTI model over a long period of time.
Consequently, two approaches can be followed.

e An adaptive MPC controller that updates the parameters during
operation becomes a potential solution. Adaptive MPC has been
widely applied in engineering in general, but it has surprisingly been
rarely investigated in building energy control [20]. Yang et al. [21]
developed an adaptive robust model predictive control for indoor
climate optimization, the model is based on a detailed grey-box
model and updates the parameters every 24 h. Yang et al. [22]
also introduced an adaptive machine-learning-based model for
building control based on an artificial neural network (ANN). Fux
et al. [23] used an extended Kalman filter-based self-adaptive ther-
mal model for passive house demand prediction with the model
updating the parameters at each time step. Choi et al. [24] used an
adaptive neural network model to perform the optimal control for a
data center. Maree et al. [25] proposed an adaptive control for
heating demand-response in buildings that incorporates a rein-
forcement learning (RL) strategy. Zhang et al. [26] proposed a
time-dependent solar aperture estimation method based on
B-splines, which could be considered an adaptive grey-box model of
buildings. Merema et al. [27] and Wolisz et al. [28] also applied
adaptive control strategies for long period control, which updates the
coefficients of ARX models during operation.

e The alternative approach is to train the LTI model over a specific
period of the year which leads to a model that generalizes well over
the entire space-heating season. This is the approach followed by
Broholt et al. [29] suggesting that the end of the heating season is the
most robust month to train the model for the climate of Denmark.
However, they have not tested the impact of the model prediction
accuracy in MPC.

Existing research on the robustness of Model Predictive Control
(MPC) using Linear Time-Invariant (LTI) models predominantly focuses
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on scenarios with stable weather conditions, overlooking the complexity
related to variable weather. This gap is critical, as it raises questions
about the performance of LTI models under changing environmental
conditions. Our study directly addresses this knowledge gap by
comparing the performance of conventional MPC based on LTI models
with adaptive MPC strategies in a simulated environment (i.e., co-
simulation). We introduce two adaptive MPC approaches, the Partially
Adaptive MPC and the Fully Adaptive MPC, and evaluate their effec-
tiveness in managing the thermal dynamics of buildings under variable
weather conditions. This comparison provides novel insights into the
adaptability and resilience of these control strategies based on linear
grey-box models, contributing significantly to the field of building en-
ergy optimization and demand response in the face of renewable energy
integration.

Two candidates for adaptive MPC controllers are designed. The first
one, called the Partially Adaptive MPC, only updates the effective win-
dow area of the grey-box model when the prediction error is higher than
a specific threshold during operation. The effective window area is a
model parameter which is the ratio between the solar gains injected in a
node of the RC model and the total solar irradiation measured on a
horizontal plane (I,)). The main reason to focus on the effective window
area is that solar gains are highly non-linear [30] and a dominant factor
that influences the model accuracy. Due to cloud cover, changing alti-
tude and zenith angles of the sun, the effective window area is expected
to change significantly during the space-heating season, especially for
high latitudes. The second one, called the Fully Adaptive MPC, updates all
the parameters when the prediction error exceeds a specific threshold
during operation. It means that the parameters related to the thermal
dynamics of the building envelope are also calibrated during operation,
even though the physics is less non-linear than the solar gains [30]. It
gives more degrees of freedom as more parameters can be calibrated
compared to the other adaptive MPC. However, the Fully Adaptive MPC
theoretically takes more time to converge when it updates the model
parameters. Furthermore, there is a risk of obtaining a set of unphysical
parameters due to insufficient training data (meaning that the model is
practically non-identifiable).

IDA ICE is a building performance simulation (BPS) software that
performs detailed dynamic multi-zone simulations. It is used to mimic
the thermal dynamics of a residential building in a realistic way, which
is the emulator of the virtual experiments. Firstly, the model identifi-
cation uses the data generated from IDA ICE where the building has been
heated using different excitation signals during the space-heating season
to train the parameters of the grey-box model. Secondly, the obtained
grey-box models are then used as the LTI model of the MPC controller or
as the initial model for the adaptive MPC controller. The controller is
written in MATLAB and coupled with IDA ICE with a co-simulation
function provided by a company called EQUA.

The remainder of the paper is structured as follows. Section 2 de-
scribes the virtual co-simulation experiment setup, which includes the
IDA ICE building information, the excitation signals, the boundary
conditions, and the co-simulation routine. Section 3 describes the
methodology of this study, including the grey-box model structure and
the algorithm to identify the grey-box model parameters, followed by
the optimal control problem setup and the algorithm of the adaptive
grey-box model. Section 4 presents the results, which compare the
control performance of the MPC controllers based on the two control
objectives. Finally, a discussion is given in Section 5 followed by con-
clusions in Section 6.

2. Description of virtual experiments setup

Virtual experiments are conducted using co-simulation, where the
IDA ICE model is used as the emulator. The IDA ICE model was devel-
oped in a previous study [31]. The appearance of the building model in
IDA ICE is shown in Fig. 1. It is a two-story detached house located in
Oslo. The house has a floor area of 160 m? and is constructed of wood.
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Fig. 1. Virtual 3D geometry of the building model in IDA ICE (showing the
southwest facade).

This building has a lightweight construction and complies with the
Norwegian passive house standard (NS 3700 [32]). The building floor
plan is presented in Fig. 2. The residential building is equipped with
balanced mechanical ventilation with a heat recovery unit. This heat
exchanger is modelled with constant effectiveness of 85% without
bypass (like a plate heat exchanger), which gives better linearity to the
IDA ICE model. The dominant heat dynamics to be modelled is the en-
velope, which has relatively good linear properties. Therefore, it is
reasonable to use a linear grey-box model as the prediction model for the
MPC controller. The IDA ICE model is multi-zone, but all the internal
doors of the building are set to be open. The embedded ventilation
network model inside IDA ICE can account for the large bidirectional
airflow due to open doorways. The air temperature inside the building in
the simulation is thus relatively uniform due to large convective heat
transfer between rooms. Therefore, it is reasonable to use a mono-zone
grey-box model as the prediction model in this study. This also decreases
the computational time of the MPC optimization significantly. The
volume-averaged air temperature of all the thermal zones is taken to
represent the indoor air temperature of the grey-box model. The
space-heating system in the IDA ICE model is electric radiators which are
the most common for Norwegian residential buildings [33]. The thermal
capacity of electric radiators is neglected as it is small compared to the
envelope. The profile for internal gains and occupancy is based on the
Norwegian technical standard TS3031:2016 [34]. These daily profiles
with 1-h resolution do not vary during the space-heating season.

The heat dynamics of the building need to be excited to collect
information-rich input-output data to train the model parameters. The
Pseudo-Random Binary Sequence (PRBS) is considered to be an ideal
excitation signal since it approximates white noise properties, which can
excite the dynamic system in a large spectrum of frequencies [35,36].
The PRBS signal is applied to the only controllable input of the system (i.

(3) Laundry _

(1) Living room / kitchen

L == - = =
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e., electric radiators) to collect the training data. However, applying a
PRBS signal to the space-heating system is not always feasible as a PRBS
signal may cause large indoor temperature variations, which can be
experienced as uncomfortable for occupants. Thus, the data collected
under conventional operations are also taken as training data. To this
end, intermittent heating with changing temperature setpoints between
daytime and nighttime (i.e., a night setback) is applied. The local
controller of the radiator is an on-off control that is representative of
electric radiators. In this study, the model trained from the PRBS signal
is only used for the MPC based on an LTI control model. The historical
weather data of Oslo is taken from Shiny Weather Data [37]. Some
characteristics of the weather conditions and the period of the PRBS
signal excitation experiments are given in Table 1. The model trained
using the full winter intermittent heating with changing temperature
setpoints is used for the MPC based on an LTI model and as the initial
model for both candidates of the adaptive MPC.

The co-simulation virtual experiment lasted for 61 days (from
November 1st to December 31st). The time step in the co-simulation is
set to 15 min. At each step, IDA ICE first sends the calculated volume-
averaged indoor temperature (T;) of the building to MATLAB. The
MPC controller then takes the prediction of the weather data and the
internal heat gains into the MPC optimization. It generates the optimal
control sequence (i.e., the optimal heating power, Qy) over the predic-
tion horizon. Only the first time step of the control sequence is sent to
IDA ICE to be executed during one time step. After the first time step is
completed, the new state of volume-averaged indoor temperature is sent
back to MATLAB again and a new round starts. The process keeps iter-
ating within the co-simulation framework until the predetermined
simulation period is completed. A sketch of the co-simulation process is
presented in Fig. 3. Khatibi et al. [38] have used a similar co-simulation
setup in IDA ICE in their study to investigate the flexibility of the air
heating and ventilation system. IDA ICE requires an initialization period
before the temperature difference between the zones is realistic.
Therefore, a PID control is taken at the beginning of the co-simulation
before starting the MPC. The length of this initialization of the virtual
experiment is set to be a half-day before switching to MPC.

In the MPC, the minimum indoor temperature limit is set to be 20 °C
and the maximum limit is set to be 24 °C. There is a night setback for the
minimum temperature limit decreasing from 20 °C to 16 °C from 11 p.m.

Table 1

Weather conditions during PRBS experiments.
Type Mean outdoor temperature Sky Starting date Duration
Cold 0°C Overcast 12/24/2019 One week
Mild 5°C Overcast 11/23/2019 One week

$i% e (5)
Bathroom

S )|
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(6)
Bedroom SE
] .

Corridor

9 (8)
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3640 3700

(b) Second floor

Fig. 2. Floor plan of the test building (ducts for the supply air are in blue and in red for extraction). (For interpretation of the references to colour in this figure

legend, the reader is referred to the Web version of this article.)
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Fig. 3. Co-simulation setup between IDA ICE and MATLAB.

to 7 a.m. The indoor temperature bounds are defined as Equation (1).
The indoor temperature limits are used as thermal comfort constraints
for the MPC. For the sake of simplicity, the radiator in the IDA ICE model
is assumed to be able to modulate its power by adjusting its part load
ratio (PLR). The total heating power of all the radiators is 3220 W. Thus,
the power constraint of the heating system is from 0 to 3220 W in the
MPC.

16 < T; < 24if t € (23 : 00,24 : 00)
16 < T; < 24if € (0: 00,7 : 00) )
20 < T, < 24if t € (7: 00,23 : 00)

The electricity price profile is also needed for the MPC as an index for
making decisions. It is generated from the historical electricity price
from Nord Pool. The penalty cost for using electricity during peak hours
is a predefined penalty profile that has two levels and is repeated daily.
The electricity price profile and the peak hour penalty cost profile are
given in Fig. 4 in Norwegian krone [NOK/kWh].

3. Methodology
3.1. Grey-box model

A considerable amount of research has already been done to inves-
tigate suitable mono-zone grey-box models for MPC implementation in

1.0

buildings [5,18,39-42]. However, a specific model structure in one
piece of research is unlikely to be suitable for other buildings with
different geometries and materials. Thus, selecting a suitable grey-box
model structure for the MPC controller is the prerequisite of this
study. A model structure that is too complex may lead to overfitting and
increase the calculation cost drastically. A simple model structure can
decrease the computational time for optimization but may lead to un-
acceptable prediction performance. In the previous study [31] using the
same building, the second-order 3R2C grey-box model has proven to be
a suitable trade-off between model complexity and accuracy. Therefore,

U/‘inf

a
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[

Fig. 5. 3R2C grey-box model.
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Fig. 4. Electricity and peak hour penalty cost profile (from November to December).
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our study also takes the 3R2C as the prediction model structure, which is
presented in Fig. 5. The definition of parameters for the model is given in
Table 2.

The corresponding state-space model in Fig. 5 is given by:

(UA,, + UA,) UA,

[Te} _ Ce C {T}
Ll vAe (UAw+ UAW) | LT

C,‘ C,‘
A A T,
e 00 0 ||
+ ‘ ¢ in 2
Ui Ai 1 1 1 g ‘[ )
C,' C,' C,' C, C,' Qh
_ T,(1)
0 =0 1] 70| ®

The MATLAB system identification toolbox [43] is used to fit the
parameters of the grey-box models. The linear state-space grey-box
model is formulated in the innovation form, i.e.,

dx
7 =Ax(t) + Bu(t) + Ke(t) @
¥(1)=Cx(1) + e(?) (5)

where x is the state vector, A, B and C are the system matrices, u is the
input vector (i.e., Ta, Isol, Qint, Qvent, Qn) and y is the output (i.e., indoor
temperature, T;). The stochastic model is an extension of deterministic
model (K = 0) [13]. K is the disturbance matrix of the innovation form
(Kalman gain) [44].

This study uses an optimization routine in two stages that combines a
global optimization followed by a gradient-based optimization to avoid
converging to a local optimum. Detailed information can be found in the
previous study [31]. The first stage uses heuristic particle swarm opti-
mization (PSO) to get a first estimation of parameter values. The second
stage takes the gradient-based optimization function (greyest) of the
MATLAB system identification toolbox to further polish the parameter
values. The objective function f(x) of the optimization is defined as
Equation (6),

Building and Environment 254 (2024) 111391

co-simulation (operation phase) is 15 min, like the time interval of the
MPC. The data collected during the operation phase is used to update the
model parameters of the adaptive MPC controller. However, 15 min is a
relatively long sampling time, which may be larger than the shortest
time constant of the building thermal dynamics. Previous studies [31]
have shown that this may prevent the identified parameter values from
being physically plausible. In line with these two studies, a time shift,
called anti-causal shift (ACS) [45], of the input is applied to the data
collected during the operation phase (i.e., input delay = -Tj). It has
proven to be beneficial for model identification with large T [31,45].
In the preliminary experimental MPC operation, the deterministic
model shows similar prediction performance as the stochastic model.
Therefore, the deterministic model is used when updating the parame-
ters as it showed quicker convergence when updating the parameters.

3.2. Optimal control problem formulation

This study investigates the performance of the MPC controllers with
two control objectives to make sure conclusions do not depend on the
objective function.

1) Objective 1 (Energy Savings): Minimal total electricity use of the
heating system while minimizing indoor thermal discomfort at the
same time.

Objective 2 (Energy Cost Saving with Peak Reduction): Minimal total
electricity cost and reduce electricity use during the peak hour of the
grid while minimizing indoor thermal discomfort. The electricity
spot price from Nord Pool and the historical weather data for 2019
are used in this study. An MPC minimizing energy costs is usually
called economic model predictive control in other studies.

2

—

With these control objectives and the constraints defined in Section
2, the optimal control problem can be formulated. As previously
mentioned, the time step of each control decision is 15 min. The pre-
diction horizon of the MPC controller is set to be 24 h (96 slots, N = 96).
This prediction length is a typical value in MPC building applications
[16,46,47]. The prediction length is also acceptable considering the
computational cost. The equations of the optimization problem are
given below.

Case 1.
N-1
argmin Y O4[k] + &1 [K|Le, [K] + e2[k] Le, [K] )
(6) On k=0
where y; is the measurement output, while Yy (6) is the prediction of the
model (with parameter set 6). Case 2;\1—1
The dataset in this study has two different time intervals (Ts). The argmin 'y ¢, [k]On[k] + pu[K]Qnlk] + €1 K] Lél [k] + &3[k] Lg’z [k] (8)

dataset collected for the model training phase has a sampling time of 2.5 O k=0
min, while the sampling time for the dataset collected during the MPC Subject to
Table 2
The physical interpretation of the parameters of all grey-box models.

Parameters Physical interpretation and unit

T; Temperature of the internal node (i.e., indoor air, furniture) [°C].

T, Temperature of the external walls [°C].

Ty The outdoor temperature [°C].

C; Heat capacity including the thermal mass of the air, the furniture [kWh/K].

C. Heat capacity of the node external wall [kWh/K].

UA;e Heat conductance between the building envelope and the interior [kW/K].

UA.q Heat conductance between the outdoor and the building envelope [kKW/K].

UAins Heat conductance between the outdoor and the interior node (modeling components with negligible thermal mass, like windows and doors) [kW/K].

Qine Internal heat gain from artificial lighting, people, and electric appliances [kW].

Qn Heat gain delivered by the heat emitter [kW].

Lot Global solar irradiation on a horizontal plane [W/m?].

A; The effective window area of the building corresponding to the node T; [m?].

A, The effective window area of the building corresponding to the node T, [m?].
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x[k+ 1] = Fx[k] + Gu[k] + Ke[k],k € Ny 9
T;[k] = Cx[k], k € Ny~ (10)
Ty [k] — €1 (k] < Ti[k], k € N~ an
Ti[k] < T,p[K] + e2[k], k € N ' 12)
0 < Oulk] < Qumalk], k € Ny~ 3)
0<g[k];0 < ek],k € N)! 14)

where x[K] is the state vector in discrete-time, F, G and C are the discrete
system matrices trained from the system identification process, u[k] is
the input vector in discrete-time and y[k] is the output. K is the tuned
steady Kalman gain of the model. Qy[k] is the calculated optimal heat
power at each step in the prediction horizon, while Qp max[k] is the max
power of the heating system. €; [k] and e3[k] are the slack variables of
the soft constraints for the thermal comfort band. L is the weighting
factor that is set to penalize thermal discomfort in the objective function.
The soft constraints enable the solver to avoid infeasible optimization
problems by allowing thermal comfort bands to be violated. c,[k] is the
electricity price profile at each slot. py[k] is the penalty cost for using
electricity during peak hours. Ti[k] is the predicted indoor temperature
from the prediction model. Tiow[k] and Tp[k] are the corresponding
temperature boundaries inside the prediction horizon. The receding
horizon is implemented in the MPC, so the above optimization problem
is solved at each step (every 15 min) to get the optimal control decision.
Then, the initial states of the control model and weather forecasts are
updated with the receded prediction horizon. Thermal discomfort is not
desirable. Thus, the penalty weight factor L of the slack variables is given
with a large value. The baseline penalty weight factor L is set to 108 in
this study, but L is also set at 10° in the sensitivity analysis. A solver that
can solve quadratic programming optimization problems is needed due
to the quadratic form of the slack variables €; and €. The toolbox
YALMIP [48] in MATLAB is used for the optimization problem formu-
lation, and Gurobi [49] is used to solve the optimization problem.

3.3. Conventional and adaptive MPC

This study uses two months of simulation to compare the perfor-
mance between the conventional and adaptive MPCs. The conventional
MPC is based on an LTI model, and the parameter values are kept un-
changed during simulation. One primary objective of this study is to
examine how the selection of the training data affects MPC performance.
Thus, perfect weather forecast is assumed to exclude the variability of

T T
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Temperature [°C]
3 o 3
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Global Solar Irradiation [W/m?*]
°

Fig. 6. Weather profile for November, December and March.
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Table 3
Case summary of experiments.

Case Excitation Training Period

FullWinter Intermittent on—off 11/01/2019 - 03/31/2020

PRBSNOV PRBS 11/23/2019 - 11/30/2019
PRBSDEC PRBS 12/24/2019 - 12/31/2019
ONOFFNOV Intermittent on—off 11/01/2019 - 11/30/2019
ONOFFDEC Intermittent on—off 12/01/2019 - 12/31/2019
ONOFFMAR Intermittent on—off 03/01/2020 - 03/31/2020
Partially Adaptive MPC operation During operation

Fully Adaptive MPC operation During operation

weather prediction to simplify the analysis. The conventional MPC has
six variants using different LTI models trained on different periods. The
FullWinter model is trained with the entire winter season data where the
building is heated using intermittent temperature setpoints. There are
two LTI models trained using the data from PRBS experiments of
November and December, respectively, called PRBSNOV and PRBSDEC.
There are another three LTI models trained using the data from inter-
mittent on-off experiments of November and December and the last
month of the heating season, meaning March. These variants are called
ONOFFNOV, ONOFFDEC and ONOFFMAR, respectively. The two
adaptive MPCs take the FullWinter model as the initialization model.
The weather profile for each month is depicted in Fig. 6.

It is unreasonable to use short training period data to update the
model parameters as it leads the parameters to be completely unphysical
or have large uncertainty. On the other hand, taking a long period of
historical data for retraining is also not optimal since the adaptive MPC
should be able to adapt the parameters for changing operating condi-
tions. Pushed to the extreme, a very long retraining period will make the
adaptive model converge towards an LTI model. Therefore, the length of
the retraining period for updating the parameters is set to 7 days. Pre-
liminary tests have shown that seven days of data using intermittent on-
off heating leads to a model with physically plausible parameters and
fair prediction performance. The cases of 14 days training period are
added for comparison purposes. Given the duration of the retraining
period, the adaptive MPC routines are not allowed to update parameters
until the first m steps (i.e., m = 672 for 7 days training period) of
simulation are completed.

The Partially Adaptive MPC only updates the effective window area
(A;) in the parameter set of the model during the simulation. The Fully
Adaptive MPC updates all the grey-box model parameters during
simulation. The pseudo-code to update the model parameter using the
Partially Adaptive MPC and Fully Adaptive MPC is presented in Algo-
rithm 1. In this operation, 6 represents the parameter being updated.
Specifically, 0 refers to A; in the context of Partially Adaptive MPC, and
encompasses all parameters (Ce, Ci, UAje, UAea, UAinf, Ae and A;) in the
case of Fully Adaptive MPC. A summary of the different cases is given in
Table 3.

The sliding accumulated error ¢ is the sum of absolute prediction
errors, serving as the index for determining the need for a parameter
update. The absolute prediction error represents the absolute difference
between the indoor temperature measurement in IDA ICE at a given time
step (Tif*) and the indoor temperature predicted by the MPC for that
time step (THk;) over the preceding n steps (i.e., n = 12, which is 3 h).

The parameter updating routine is activated when ¢ exceeds a pre-
determined threshold 7. The threshold is originally set z = 5 Kh in this
study. A lower 7 means a lower tolerance for error, which can be tuned
based on the application scenario.

To investigate the influence of the training period and error
threshold on the performance of adaptive MPC. The cases with 7 = 2.5
Kh and a training period of 14 days for updating the parameters with
penalty weight factor L = 10® are also presented in the sensitivity
analysis.
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Algorithm 1. Pseudo-code for the Adaptive MPC

Algorithm 1: Adaptive MPC

Initialize: Set @0 , 7 initial value, Set FullWinter model as the prediction
model of MPC.

Data: {[ Tikn+n*, Tikn+21* ... Tig*], [Titkn+1¥, Titkens2p, ... Tx’], OCK), @i}
updated at each time #

for t = t to tfina do
Solve MPC for u
Calculate px= Zf‘:k_n+1|Ti[k]* — Ti[k]p|
If pe>1
Update parameters
arg min X%, (Tyy” = Tigi”)”
Ok+1= Ol
else

O+ = Ok

end

end

3.4. Key parameters and KPI

The Fully Adaptive MPC updates all its parameters during simula-
tion, and the time evolution of some key parameters of the model is
monitored during the operation. These key parameters are the overall
heat transfer coefficient (HTC), the thermal capacitances (C; and C.) and
the dominant parameter for modeling the influence of the solar radia-
tion, the effective window area (A;). The overall heat transfer coefficient
(HTC) is the total heat loss of the building in steady-state [31]. In a
highly insulated and airtight building as considered in this study, heat
conduction dominates the overall heat losses and this heat transfer
process has good linear properties. Heat transfer by convection and
long-wave radiation is nonlinear but is of secondary importance. The
HTC is the combination of several resistances of the grey-box model. The
definition of HTC for the 3R2C model is defined by Equation (15). A
reference value for HTC is 85 W/K (identified by applying a step func-
tion of the space-heating to the IDA ICE model).

HTC + UAiye (15)

1
T 1/UA. + 1/UA,

The capacitances (C; and C) are directly related to the building
thermal dynamics. Based on ISO 13786:2017 [50], the reference value
of the effective heat capacitance of the building (Ceff) is estimated to be
3.9 kWh/K using daily period temperature variations. The Ce can be
used as a reference for the sum of the parameters C; and C.. They should
not be equal but have the same order of magnitude.

Regarding the KPIs for evaluating the MPC performance, the first test
case (Energy Savings) takes the total energy use [kWh] and the thermal
discomfort. The second case (Energy Cost Saving with Peak Reduction)
considers the energy use during peak hours [kWh] and the total cost
[NOK] combining the energy cost and the peak-hour penalty cost into
the evaluation KPI. The thermal discomfort is quantified in Kelvin hours
(Kh) outside the predefined thermal comfort band.

4. Results
This section compares the performance of the different MPC con-

trollers for the two different control objectives. Therefore, the co-
simulation results are evaluated successively based on the control
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objectives. The trained parameter values of the three LTI models are
shown in Table 4. As can be seen, the HTC and A; are significantly
different for the LTI model identified using the FullWinter data than the
two LTI models using the PRBS excitation signal.

4.1. Energy savings (ES)

Energy savings is the most basic control objective of this study.
Figs. 7 and 8 present a selected period of the indoor temperature profile
under the operation of the different MPC controllers using this control
objective for L = 10° and L = 10® penalty factors, respectively. The total
energy use and the thermal discomfort (61 days) of those different MPC
controllers with different penalty factors are calculated so that the MPC
controller performance can be quantitatively compared in Table 5.

Results show that the FullWinter model makes inaccurate indoor
temperature predictions, which causes the thermal comfort constraint to
be frequently violated. The Partially Adaptive MPC shows a similar
inaccurate prediction compared to the FullWinter MPC. The thermal
comfort constraint is still frequently violated. With the lower penalty
factor 10°, the thermal discomfort of Partially Adaptive MPC is even
larger than FullWinter MPC. These two models consume less energy
compared to the other models (i.e., the Fully Adaptive MPC and the
PRBS MPC) because they are less accurate, which causes the indoor
temperature to drop below the minimum indoor temperature threshold.
The heating system is switched on far too late in the morning, resulting
in significant thermal discomfort. It indicates that the LTI grey-box
model trained using the data from the full space-heating season may
not be as suitable as the prediction model in MPC.

PRBSNOV MPC and PRBSDEC MPC perform better than the Full-
Winter and Partially Adaptive MPC models in terms of avoiding thermal
discomfort, which can be clearly seen in Figs. 7 and 8. PRBSDEC MPC
performs better than PRBSNOV MPC in terms of thermal comfort leading
to a slightly higher energy use. The influence of the penalty factor on
PRBSNOV MPC is more evident than on the PRBSDEC MPC. The per-
formance of ONOFFNOV MPC and ONOFFDEC MPC are almost iden-
tical. With the lower penalty factor 10°, the thermal discomfort is
slightly higher than PRBSDEC. With the higher penalty factor 108, the
thermal discomfort is similar to PRBSDEC but the energy use is slightly
lower. The ONOFFNOV and ONOFFDEC perform better than expected,
they show even better performance compared to the model trained from
PRBS excitation signal in November. This proves that intermittent on-off
can also be a good choice for exciting the thermal dynamics of the
building to obtain the data for training the parameters of the model.

Though the paper [29] suggests that the end of the heating season is
the most robust period for training the model, ONOFFMAR MPC per-
formance is much worse than the LTI MPC that trained from the corre-
sponding operation period (ONOFFNOV and ONOFFDEC). However,
ONOFFMAR MPC performs much better than the FullWinter MPC,
which indicates that the model trained from the data at the end of the
heating season is more suitable than the full winter LTI model. All the
results above prove that it is important to use a model that is trained
with data generated from weather conditions similar to the period when
the MPC will be operated.

The Fully Adaptive MPC performs much better than the Partially
Adaptive MPC in all KPIs due to more degrees of freedom to fit the model

Table 4

Trained parameter values of the LTI models.
Case HTC [W/K] C. [kWh/K] C; [kWh/K] A; [m?]
FullWinter 81.42 4.03 0.33 6.09
PRBSNOV 96.43 4.81 0.42 16.96
PRBSDEC 94.25 4.93 0.41 15.94
ONOFFNOV 85.19 4.09 0.46 9.43
ONOFFDEC 88.76 4.26 0.44 15.60
ONOFFMAR 84.77 4.59 0.47 4.36
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Fig. 7. Close-up of the indoor temperature profile under the operation of different MPC controllers with energy savings objective, L = 10°.
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Fig. 8. Close-up of the indoor temperature profile under the operation of different MPC controllers with energy savings objective, L = 10°.

parameters. The Fully Adaptive model performs the best among the
MPCs in avoiding thermal discomfort, which can be clearly seen in
Figs. 7 and 8. However, the lower thermal discomfort from Fully
Adaptive MPC also results in higher energy consumption compared to
good LTI MPCs like ONNOFFNOV and ONNOFFDEC MPCs.

Table 6 is the sensitivity analysis of the training period and error
threshold on the performance of Fully Adaptive MPC. The cases involve
two different training periods and error tolerances: the first case has a
training period of one week with an error tolerance of T = 2.5, and the
second case has a training period of two weeks with an error tolerance of
T=25.

From Tables 6 and it can be noticed that with the lower error
tolerance t = 2.5 for the Fully Adaptive MPC, the results are almost

identical to the condition with error tolerance t© = 5. However, with a
longer training period of two weeks of data under MPC operation, the
thermal discomfort significantly increases, which indicates that a too-
long training period may not be suitable for the Fully Adaptive MPC.

4.2. Energy cost saving with peak reduction (EMPCPR)

The energy cost saving with the peak reduction case is generated by
adding a penalty for energy use during the peak hour to the electricity
price. Figs. 9 and 10 show the indoor temperature profile using the
different MPC controllers with the energy cost saving and peak power
reduction objective for both L = 10° and L = 10® penalty factors. The
quantitatively calculated comparison results of MPC controllers
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Summary of the MPC performance for the energy saving (November and December).

Case Energy Use [kWh] (L=10%) Thermal Discomfort [Kh] (L=10°) Energy Use [kWh] (L=10%) Thermal Discomfort [Kh] (L=10%)
FullWinter 319.54 453.93 328.56 210.74

PRBSNOV 327.15 216.76 334.77 164.93

PRBSDEC 336.93 96.84 342.51 86.30

ONOFFNOV 337.79 112.60 341.11 85.40

ONOFFDEC 336.51 123.65 341.83 90.56

ONOFFMAR 326.56 198.10 332.79 185.57

Partially Adaptive 319.56 462.61 326.32 247.05

Fully Adaptive 341.75 79.74 353.89 50.68

Table 6

Summary sensitivity analysis of the Fully Adaptive MPC performance for the ES case (November and December).

Fully Adaptive MPC Fully Adaptive MPC (half error) Fully Adaptive MPC (two weeks) Penalty Factor (L)
Energy Use [kWh] 893.62 899.38 886.34 108
Thermal Discomfort [Kh] 72.04 73.51 132.44 108

performance are shown in Table 7. The peak hour penalty is added to the
hourly electricity price profile to reconstruct the new cost profile. The
electricity energy cost is still the energy used at each time step multi-
plied by the corresponding electricity price. The total cost is the electric
energy cost plus the peak hour penalty cost.

The MPC controllers switch off the heating during high price periods
(e.g., at about 770 h) to decrease the total cost, which can be seen from
the decrease in the indoor temperature.

Results show that the FullWinter and the Partially Adaptive MPCs are
still performing poorly in the case of EMPCPR. Large thermal discomfort
is still occurring due to the inaccurate prediction of the model. It can be
clearly seen in Figs. 9 and 10 that the two MPC controllers choose to
switch off the controller at the high price periods, even though the
minimum indoor temperature constraint is violated. It consolidates the
conclusion based on the previous two cases. An LTI model trained from
full winter data is not appropriate to be used as the prediction model for
MPC control. Only updating the effective window area of the FullWinter
model leads to higher thermal discomfort. The reason is that the esti-
mated effective area A; of the Partially Adaptive MPC is higher than the
FullWinter MPC in most of the operation time, which leads to a higher
heat gain from solar radiation. In other words, the HTC value of the

FullWinter MPC is lower than the reference HTC value of the IDA ICE
building, causing an underestimated heating demand. It neutralizes the
effect of underestimated heating demand to a certain degree. Therefore,
the correction of solar heat gain from the Partially Adaptive MPC has a
negative impact on thermal comfort for this case study. The Partially
Adaptive is not able to preheat the building enough because the control
model overpredicts the solar gain which causes a higher thermal
discomfort level.

Similar to the previous case, the PRBSDEC MPC performs slightly
better than the PRBSNOV MPC in terms of thermal comfort. However,
the PRBSDEC MPC causes an increased total cost and more peak hour
electricity usage. In general, the two models generally have much better
performance compared to the FullWinter and the Partially Adaptive
MPCs. With the lower penalty factor 10, the thermal discomfort of
ONOFFDEC MPC is slightly higher than PRBSDEC, while ONOFFNOV
MPC has a slightly lower thermal discomfort compared to PRBSDEC. The
total energy costs of ONOFFNOV and ONOFFDEC MPC are lower. The
ONOFFNOV and ONOFFDEC MPC also perform better than expected in
the EMPCPR case. With the higher penalty factor 108, the performance
of ONOFFNOV MPC and ONOFFDEC MPC are also almost identical.
They have lower thermal discomfort compared to the PRBSDEC and
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Fig. 9. Close-up of the indoor temperature profile under the operation of different MPC controllers with energy cost saving and peak reduction, L = 10°.
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Table 7
Results summary of MPC controllers’ performance for energy cost saving (EMPCPR) case (November and December).
Case Energy Cost Total Cost Thermal Peak Hour Energy Cost Total Cost Thermal Peak Hour
[kWh] [NOK] Discomfort [Kh] Energy [kWh] [kWh] [NOK] Discomfort [Kh] Energy [kWh]
(L=10% L=10% L=10°% L=10% (L=10°%) Z=10%) L=10%) L=10%)
FullWinter 328.67 405.38 312.18 38.36 327.53 396.37 200.11 34.42
PRBSNOV 330.36 384.13 169.55 26.89 345.13 420.98 96.51 37.92
PRBSDEC 338.94 403.31 81.12 32.19 348.70 430.05 44.98 40.67
ONOFFNOV 342.73 373.64 73.06 15.46 352.35 387.27 34.63 17.46
ONOFFDEC 343.09 375.22 84.28 16.06 353.59 389.76 37.96 18.09
ONOFFMAR 319.92 382.44 180.20 31.26 337.76 414.03 133.54 38.13
Partially Adaptive 328.17 408.80 311.81 40.31 325.81 397.32 220.24 35.76
Fully Adaptive 350.06 379.77 45.13 14.86 355.80 410.36 30.51 27.28
Table 8

Summary sensitivity analysis of the Fully Adaptive MPC performance for the EMPCPR case (November and December).

Fully Adaptive MPC

Fully Adaptive MPC (half error)

Fully Adaptive MPC (two weeks) Penalty Factor (L)

Energy Cost [NOK] 355.80 365.06
Total Cost [NOK] 410.36 418.20
Thermal Discomfort [Kh] 30.51 17.99
Peak Hour Energy [kWh] 27.28 26.56

358.81 10®
440.62 108
48.15 108
40.90 108

PRBSNOV with even lower energy costs. This proves that intermittent
on-off can also be a good choice for exciting the thermal dynamics of the
building to obtain the data for training the parameters of the model. Like
the previous ES case, ONOFFMAR MPC performs much worse than the
LTI MPC that was trained from the corresponding operation period and
better than the FullWinter MPC and Partially Adaptive MPC. This con-
firms that the model trained from the data at the end of the heating
season is more suitable for the full winter LTI. However, all the results
above affirm again the importance of using a model that is trained with
data generated from weather conditions similar to the period when the
MPC will be operated.

The EMPCPR case clearly shows that the Fully Adaptive MPC out-
performs the other MPCs in avoiding thermal discomfort. The best MPC
based on LTI that could compete with the Fully Adaptive MPC was the
ONOFFDEC MPC. In the EMPCPR case with the lower penalty factor L =
10, the Fully Adaptive MPC gives better performance for most KPIs
compared to ONOFFDEC except for slightly higher energy costs. In the
EMPCPR case with the higher penalty factor L = 108, the thermal

10

discomfort of Fully Adaptive MPC is lower than ONOFFDEC MPC.
However, the total energy cost and energy use during peak hours are
higher. The main reason is that the Fully Adaptive MPC operates with
the FullWinter model during the first seven days before it is allowed to
perform a first adaptation of the model parameters.

Table 8 is the sensitivity analysis of the training period and the error
threshold for the EMPCPR case. The thermal discomfort is reduced with
the lower error tolerance t = 2.5, the total cost is also slightly increased
compared to the baseline Fully Adaptive MPC (error tolerance T = 5).
The Fully Adaptive MPC updates parameters based on two weeks of data
and performs worse than the baseline Fully Adaptive MPC in all KPIs,
which confirms again that a long training period may not be suitable for
Fully Adaptive MPC.

4.3. Time evolution of the model parameters

The physical plausible properties of the parameters are also moni-
tored in this study. This section presents the time evolution of the
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Fig. 11. History of the HTC value during the two months of MPC operation.

updated parameters with the high penalty value L = 108, Fig. 11 pre-
sents the history of the HTC value. The values of the FullWinter MPC and
the Partially Adaptive MPC are overlapped due to the identical value.
The results of the Fully Adaptive MPC have been distinguished with
different line styles for the two different test cases. It can be seen that the
Fully Adaptive MPC has two significant parameter updates during the
simulation period, but the time when these updates occur is not identical
depending on the objective function. The obtained HTC values for the
Fully Adaptive MPC are within the range to be physically plausible, the
HTC difference being within 10%. The results indicate that the Fully
Adaptive MPC training the parameter using seven days of data can give
satisfactory prediction performance with reasonable parameter values
for a relatively long simulation period and does not need to update the
parameters frequently.

Fig. 12 shows the history of parameter A;. The results of the three
cases are also distinguished with different line styles. The results show
that the A; updating history of Fully Adaptive MPC follows a similar
trend to the Partially Adaptive MPC by first increasing in November and
then decreasing in December. However, the updating history of A; for
the Fully Adaptive MPC is larger in amplitude compared to the Partially
Adaptive MPC. Furthermore, parameter A, is updated very frequently by
the Partially Adaptive MPC, which indicates that the prediction error
from the model is constantly large during the simulation. This confirms
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Fig. 12. History of the A; value during the two months of MPC operation.
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the previous conclusion regarding the FullWinter MPC and Partially
Adaptive MPC: the FullWinter model cannot provide satisfactory pre-
diction performance and the model cannot be corrected by only
updating parameter A;. The Fully Adaptive only updates A; two times
during simulation and the value is also changing significantly. It in-
dicates that parameter A; may not play a dominant role in the prediction
performance over a long timescale, though it has a significant influence
on short-term temperature based on existing research [18,26].

Fig. 13 presents the updating history of the sum of capacitances C.
and C;, named C.g. Results show that the values of the Fully Adaptive
MPC are within the physically plausible range compared to the reference
value Cefr of 3.9 kWh/K, although the values are different for the three
cases. However, it is worth mentioning that the value of Cegy is also
correlated with the value of the HTC and A;. Considering the fact that the
model only takes seven days of data under MPC operation to update the
parameters, it is reasonable that the obtained value of HTC and Ce¢r has
some uncertainties in the value as long as it can deliver decent predic-
tion performance.

5. Discussion

The complementary discussion in this section is based on the analysis
of the results.

e The Fully Adaptive MPC gives the best controller performance
among the MPC controllers in this study. After the Fully Adaptive
MPC updates parameters for the first time, the violation of the
thermal constraint is significantly reduced. Furthermore, the results
also show that the obtained parameters during simulation are
different for the two test cases but are within a reasonable range. The
explanation for that is the different timing and different data used to
update the parameters. The performance of Fully Adaptive MPC also
confirms that it is possible to use a data period of medium length (7
days) under regular operational conditions to train the model pa-
rameters as long as the parameters can be updated continually dur-
ing operation. The sensitivity analysis also shows that using a longer
period of 14 days could also lead to worse MPC control results
compared to the one trained with 7 days data. A lower error toler-
ance value can decrease the thermal discomfort but with a higher
cost. Finding a good balance between energy cost and thermal
discomfort level is important in real operations.

e The analysis is based on virtual experiments and the limited simu-
lation length of two months for the virtual experiments is due to the
long co-simulation time. The co-simulation was operated on a
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Fig. 13. History of the Ce value during the two months of MPC operation.
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workstation with an Intel Xeon E5-2697 18-core CPU clocked at 2.30
GHz, 64 GB RAM running a 64-bit version of Windows 10 Enterprise.
The co-simulation of two months takes approximately 20 h on
average to be completed. The EMPC case of the Fully Adaptive MPC
is taken as an example to illustrate the time consumption. The total
duration of the virtual experiment is 18.8 h; the total time for
updating the parameters is 95 s, and the time for MPC optimization is
18.38 h. The remaining time is spent for co-simulation and data
exchange with IDA ICE. The co-simulation for the Partially Adaptive
MPC can take much longer time due to frequent updates of the
parameters.

Due to the inherent modeling simplifications in BPS, the conclusion
might be different for real field experiments. For generalization
purposes, results should be reproduced in other simulation platforms
or on a real experiment performed over a long period of time. Many
MPC studies using field measurements are based on a short period of
experiments, see e.g. Ref. [7]. The analysis can also be repeated for
other building types or other thermal performances of the building
envelope. The test building in our study is highly insulated so that
solar gains contribute significantly to the space-heating and the air
infiltrations are limited. With an older building, the situation would
be the opposite (i.e., the insulation level would be lower and air
infiltrations higher), which would give a different dependence on the
variations in the weather conditions during the space-heating season.
The internal gains are assumed known in our study. However, they
are prone to uncertainty and are variable by nature. Therefore, the
need for model adaptation may also be driven by internal gains [20].
The MPC in this study uses a mono-zone model. It has been explained
that this choice is relevant for the building test case in this study.
However, a mono-zone model may not be sufficient for all types of
buildings and building operations (e.g., in residential buildings,
bedrooms may have a different temperature than the living areas). If
a multi-zone MPC needs to be designed, new criteria to update the
parameters also need to be developed.

The grey-box models investigated in our study are all linear. It means
that the entire building thermal dynamics has been linearized. This
may explain the limited extrapolation capabilities of LTI models and
the superiority of the Fully Adaptive MPC for different weather
conditions. In future work, more complex grey-box models, such as
non-linear models, could be considered as an alternative to improve
the extrapolation capabilities.

6. Conclusion

In this study, the MPC uses the thermal mass of the building as short-
term thermal storage to perform DR. The paper investigates the
robustness of MPC based on LTI grey-box models operated over a long
period of time and the need for adaptive models. The performance of
MPC based on LTI models and two adaptive MPC controllers based on a
linear grey-box model is compared for two different control objectives.
The model performance is assessed from the degree of completion to
fulfill the defined objectives and the avoidance of thermal discomfort.
This study uses a highly insulated detached house simulated using the
BPS software IDA ICE as the emulator. The IDA ICE model is coupled
with MATLAB in a co-simulation setup. The control signal is calculated
by the MPC controller implemented in MATLAB and sent to the heating
system so that the indoor temperature of the building in IDA ICE can be
controlled.

Regarding MPC based on LTI grey-box models, results show that an
LTI model trained using the data from the entire space-heating season
(FullWinter model) is not suitable to be used as the prediction model for
a long period of operation in MPC. It shows that a longer training period
is not always a synonym for better model performance. The MPC based
on two LTI models training using two short periods of data using a PRBS
excitation (PPRBSNOV MPC and PRBSDEC MPC) generally performs
better than the FullWinter if the training period is close enough to the
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period where the MPC is in use. It is suggested in Ref. [29] that the end of
heating season to train the model for MPC for the winter. The perfor-
mance of ONOFFMAR performs much better compared to FullWinter,
but still worse than the models trained with November and December
data. This confirms that if an LTI grey-box model is used in MPC, it
should be trained with data generated during similar weather conditions
to the period when the MPC will be operated, but the resulting LTI model
cannot be accurate enough for the entire space-heating season. The
performance of ONOFFNOV and ONOFFDEC is better than expected,
which proves that intermittent on-off signals can also be a good selection
for exciting the thermal dynamics of the model to collect the training
data. This needs to be validated in more in building MPC scenarios.

Regarding adaptive MPC, only updating the window area of the
model (Partially Adaptive MPC) is not enough to correct the baseline LTI
model and it sometimes even has negative effects on the results. The
Fully Adaptive MPC outperforms the two PRBS MPCs. Even if the ther-
mal dynamics of the building envelope is less non-linear than solar gains
according to the weather conditions, it demonstrates the need to update
all the model parameters if this model is to be used during the entire
space-heating season. The Fully Adaptive model gives more accurate
prediction, which causes the thermal discomfort to be significantly
reduced.

For further work, it would be interesting to test the adaptive MPC
controller performance for other building types under other simulation
platforms or conduct the experiment in a real building to generalize the
conclusions of this work. The influence of the stochastic behaviour of
occupants on the results should also be investigated. Finally, the study
could also be repeated using linear black-box models.
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