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A B S T R A C T   

Model predictive control (MPC) is a promising optimal control technique for activating building energy flexi
bility using its thermal mass. The performance of the MPC controller is directly related to the accuracy of the 
model prediction. Grey-box models, based on physical laws and calibrated on measurement data, are commonly 
used to represent the building thermal dynamics in MPC. Most research works use Linear Time-Invariant (LTI) 
grey-box models even though weather conditions vary significantly throughout the heating season. This is critical 
as inaccurate model prediction can lead to a lower performance of the MPC controller. This study introduces two 
adaptive MPC schemes to overcome this limitation of LTI models. The first one, called the Partially Adaptive 
MPC, only updates the effective window area of the prediction model. The second one, called the Fully Adaptive 
MPC, updates all the parameters of the grey-box model. The adaptive MPC performance is compared with MPC 
using LTI models in two different tests. The simulation-based results show that MPC based on LTI performs well if 
the control model is trained during a period with similar weather conditions as the period when the MPC will be 
applied. The Partially Adaptive MPC is unable to deliver satisfactory prediction performance due to the limited 
number of parameters that are updated. The Fully Adaptive MPC has the best performance compared to the other 
MPCs, especially as it avoids thermal comfort violations.   

1. Introduction 

The penetration of renewable energy sources (RES) in the energy 
system is increasing fast. However, RES is weather-dependent and un
certain, which brings challenges to the grid when balancing supply and 
demand. Therefore, more flexible energy solutions are needed for the 
future energy system. Demand response (DR) is considered a solution on 
the demand side to balance the volatility of electricity generation [1,2]. 
The definition of building energy flexibility given by the IEA EBC Annex 
67 is closely related to DR, which is the ability of a building to manage 
its demand and generation according to local climate conditions, user 
needs and grid requirements [3]. A significant proportion (20–40%) of 
the final energy consumption is consumed by buildings in developed 
countries [4]. The large thermal mass of a building can be used as 
short-term heat storage, making it a suitable candidate to perform DR. 

To store heat, the indoor temperature fluctuates between appropriate 
temperature limits that preserve the occupant’s thermal comfort. Model 
predictive control (MPC) is a promising technique for performing DR in 
buildings. Numerous studies have addressed the potential of MPC to 
provide flexibility to the grid from the building thermal mass, see e.g. 
Refs. [5–11]. As the quality of the prediction model has a considerable 
impact on the control performance, developing an appropriate predic
tion model is the prerequisite for MPC deployment. 

According to the availability of explicit models, the mathematical 
modeling of a dynamic system has three main categories, namely white- 
box, black-box, and grey-box models. White-box models are based on 
physical laws and have high prediction accuracy. However, white-box 
models have high mathematical complexity, and their calibration is 
time-consuming. Black-box models are purely data-driven based on 
time-series measurements from a system. Both a sufficient amount and 
quality of training data are needed to ensure the quality of the model. 
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Grey-box models are a combination of white-box and black-box models. 
The model structure of grey-box models is constructed with the domi
nant physical processes of the system and measurement data are used to 
calibrate the model parameters. In the building automation field, lum
ped resistance and capacitance models (RC networks) are commonly 
used to represent the heat dynamics of a building. Grey-box models have 
better extrapolation properties than black-box models [12,13] and 
require less experimental data in most cases [14]. 

Existing research has demonstrated that linear time-invariant (LTI) 
models can approximate the heat dynamics of buildings with sufficient 
accuracy for MPC [15–19]. However, it remains unclear whether an LTI 
grey-box model trained from one period is able to provide decent pre
diction in another period due to time-varying weather conditions 
throughout the year. The performance of the MPC controller cannot be 
guaranteed when using an LTI model over a long period of time. 
Consequently, two approaches can be followed.  

• An adaptive MPC controller that updates the parameters during 
operation becomes a potential solution. Adaptive MPC has been 
widely applied in engineering in general, but it has surprisingly been 
rarely investigated in building energy control [20]. Yang et al. [21] 
developed an adaptive robust model predictive control for indoor 
climate optimization, the model is based on a detailed grey-box 
model and updates the parameters every 24 h. Yang et al. [22] 
also introduced an adaptive machine-learning-based model for 
building control based on an artificial neural network (ANN). Fux 
et al. [23] used an extended Kalman filter-based self-adaptive ther
mal model for passive house demand prediction with the model 
updating the parameters at each time step. Choi et al. [24] used an 
adaptive neural network model to perform the optimal control for a 
data center. Maree et al. [25] proposed an adaptive control for 
heating demand-response in buildings that incorporates a rein
forcement learning (RL) strategy. Zhang et al. [26] proposed a 
time-dependent solar aperture estimation method based on 
B-splines, which could be considered an adaptive grey-box model of 
buildings. Merema et al. [27] and Wolisz et al. [28] also applied 
adaptive control strategies for long period control, which updates the 
coefficients of ARX models during operation.  

• The alternative approach is to train the LTI model over a specific 
period of the year which leads to a model that generalizes well over 
the entire space-heating season. This is the approach followed by 
Broholt et al. [29] suggesting that the end of the heating season is the 
most robust month to train the model for the climate of Denmark. 
However, they have not tested the impact of the model prediction 
accuracy in MPC. 

Existing research on the robustness of Model Predictive Control 
(MPC) using Linear Time-Invariant (LTI) models predominantly focuses 

on scenarios with stable weather conditions, overlooking the complexity 
related to variable weather. This gap is critical, as it raises questions 
about the performance of LTI models under changing environmental 
conditions. Our study directly addresses this knowledge gap by 
comparing the performance of conventional MPC based on LTI models 
with adaptive MPC strategies in a simulated environment (i.e., co- 
simulation). We introduce two adaptive MPC approaches, the Partially 
Adaptive MPC and the Fully Adaptive MPC, and evaluate their effec
tiveness in managing the thermal dynamics of buildings under variable 
weather conditions. This comparison provides novel insights into the 
adaptability and resilience of these control strategies based on linear 
grey-box models, contributing significantly to the field of building en
ergy optimization and demand response in the face of renewable energy 
integration. 

Two candidates for adaptive MPC controllers are designed. The first 
one, called the Partially Adaptive MPC, only updates the effective win
dow area of the grey-box model when the prediction error is higher than 
a specific threshold during operation. The effective window area is a 
model parameter which is the ratio between the solar gains injected in a 
node of the RC model and the total solar irradiation measured on a 
horizontal plane (Isol). The main reason to focus on the effective window 
area is that solar gains are highly non-linear [30] and a dominant factor 
that influences the model accuracy. Due to cloud cover, changing alti
tude and zenith angles of the sun, the effective window area is expected 
to change significantly during the space-heating season, especially for 
high latitudes. The second one, called the Fully Adaptive MPC, updates all 
the parameters when the prediction error exceeds a specific threshold 
during operation. It means that the parameters related to the thermal 
dynamics of the building envelope are also calibrated during operation, 
even though the physics is less non-linear than the solar gains [30]. It 
gives more degrees of freedom as more parameters can be calibrated 
compared to the other adaptive MPC. However, the Fully Adaptive MPC 
theoretically takes more time to converge when it updates the model 
parameters. Furthermore, there is a risk of obtaining a set of unphysical 
parameters due to insufficient training data (meaning that the model is 
practically non-identifiable). 

IDA ICE is a building performance simulation (BPS) software that 
performs detailed dynamic multi-zone simulations. It is used to mimic 
the thermal dynamics of a residential building in a realistic way, which 
is the emulator of the virtual experiments. Firstly, the model identifi
cation uses the data generated from IDA ICE where the building has been 
heated using different excitation signals during the space-heating season 
to train the parameters of the grey-box model. Secondly, the obtained 
grey-box models are then used as the LTI model of the MPC controller or 
as the initial model for the adaptive MPC controller. The controller is 
written in MATLAB and coupled with IDA ICE with a co-simulation 
function provided by a company called EQUA. 

The remainder of the paper is structured as follows. Section 2 de
scribes the virtual co-simulation experiment setup, which includes the 
IDA ICE building information, the excitation signals, the boundary 
conditions, and the co-simulation routine. Section 3 describes the 
methodology of this study, including the grey-box model structure and 
the algorithm to identify the grey-box model parameters, followed by 
the optimal control problem setup and the algorithm of the adaptive 
grey-box model. Section 4 presents the results, which compare the 
control performance of the MPC controllers based on the two control 
objectives. Finally, a discussion is given in Section 5 followed by con
clusions in Section 6. 

2. Description of virtual experiments setup 

Virtual experiments are conducted using co-simulation, where the 
IDA ICE model is used as the emulator. The IDA ICE model was devel
oped in a previous study [31]. The appearance of the building model in 
IDA ICE is shown in Fig. 1. It is a two-story detached house located in 
Oslo. The house has a floor area of 160 m2 and is constructed of wood. 

Nomenclature 

RES Renewable Energy Sources 
DR Demand Response 
MPC Model Predictive Control 
BPS Building Performance Simulation 
RC Resistance and Capacitance 
LTI Linear Time-Invariant 
PID Proportional Integral Derivative 
PSO Particle Swarm Optimization 
ACS Anti-Causal Shift 
PLR Part Load Ratio 
HTC Heat Transfer Coefficient 
PRBS Pseudo-Random Binary Signal  
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This building has a lightweight construction and complies with the 
Norwegian passive house standard (NS 3700 [32]). The building floor 
plan is presented in Fig. 2. The residential building is equipped with 
balanced mechanical ventilation with a heat recovery unit. This heat 
exchanger is modelled with constant effectiveness of 85% without 
bypass (like a plate heat exchanger), which gives better linearity to the 
IDA ICE model. The dominant heat dynamics to be modelled is the en
velope, which has relatively good linear properties. Therefore, it is 
reasonable to use a linear grey-box model as the prediction model for the 
MPC controller. The IDA ICE model is multi-zone, but all the internal 
doors of the building are set to be open. The embedded ventilation 
network model inside IDA ICE can account for the large bidirectional 
airflow due to open doorways. The air temperature inside the building in 
the simulation is thus relatively uniform due to large convective heat 
transfer between rooms. Therefore, it is reasonable to use a mono-zone 
grey-box model as the prediction model in this study. This also decreases 
the computational time of the MPC optimization significantly. The 
volume-averaged air temperature of all the thermal zones is taken to 
represent the indoor air temperature of the grey-box model. The 
space-heating system in the IDA ICE model is electric radiators which are 
the most common for Norwegian residential buildings [33]. The thermal 
capacity of electric radiators is neglected as it is small compared to the 
envelope. The profile for internal gains and occupancy is based on the 
Norwegian technical standard TS3031:2016 [34]. These daily profiles 
with 1-h resolution do not vary during the space-heating season. 

The heat dynamics of the building need to be excited to collect 
information-rich input-output data to train the model parameters. The 
Pseudo-Random Binary Sequence (PRBS) is considered to be an ideal 
excitation signal since it approximates white noise properties, which can 
excite the dynamic system in a large spectrum of frequencies [35,36]. 
The PRBS signal is applied to the only controllable input of the system (i. 

e., electric radiators) to collect the training data. However, applying a 
PRBS signal to the space-heating system is not always feasible as a PRBS 
signal may cause large indoor temperature variations, which can be 
experienced as uncomfortable for occupants. Thus, the data collected 
under conventional operations are also taken as training data. To this 
end, intermittent heating with changing temperature setpoints between 
daytime and nighttime (i.e., a night setback) is applied. The local 
controller of the radiator is an on-off control that is representative of 
electric radiators. In this study, the model trained from the PRBS signal 
is only used for the MPC based on an LTI control model. The historical 
weather data of Oslo is taken from Shiny Weather Data [37]. Some 
characteristics of the weather conditions and the period of the PRBS 
signal excitation experiments are given in Table 1. The model trained 
using the full winter intermittent heating with changing temperature 
setpoints is used for the MPC based on an LTI model and as the initial 
model for both candidates of the adaptive MPC. 

The co-simulation virtual experiment lasted for 61 days (from 
November 1st to December 31st). The time step in the co-simulation is 
set to 15 min. At each step, IDA ICE first sends the calculated volume- 
averaged indoor temperature (Ti) of the building to MATLAB. The 
MPC controller then takes the prediction of the weather data and the 
internal heat gains into the MPC optimization. It generates the optimal 
control sequence (i.e., the optimal heating power, Qh) over the predic
tion horizon. Only the first time step of the control sequence is sent to 
IDA ICE to be executed during one time step. After the first time step is 
completed, the new state of volume-averaged indoor temperature is sent 
back to MATLAB again and a new round starts. The process keeps iter
ating within the co-simulation framework until the predetermined 
simulation period is completed. A sketch of the co-simulation process is 
presented in Fig. 3. Khatibi et al. [38] have used a similar co-simulation 
setup in IDA ICE in their study to investigate the flexibility of the air 
heating and ventilation system. IDA ICE requires an initialization period 
before the temperature difference between the zones is realistic. 
Therefore, a PID control is taken at the beginning of the co-simulation 
before starting the MPC. The length of this initialization of the virtual 
experiment is set to be a half-day before switching to MPC. 

In the MPC, the minimum indoor temperature limit is set to be 20 ◦C 
and the maximum limit is set to be 24 ◦C. There is a night setback for the 
minimum temperature limit decreasing from 20 ◦C to 16 ◦C from 11 p.m. 

Fig. 1. Virtual 3D geometry of the building model in IDA ICE (showing the 
southwest facade). 

Fig. 2. Floor plan of the test building (ducts for the supply air are in blue and in red for extraction). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Table 1 
Weather conditions during PRBS experiments.  

Type Mean outdoor temperature Sky Starting date Duration 

Cold 0 ◦C Overcast 12/24/2019 One week 
Mild 5 ◦C Overcast 11/23/2019 One week  
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to 7 a.m. The indoor temperature bounds are defined as Equation (1). 
The indoor temperature limits are used as thermal comfort constraints 
for the MPC. For the sake of simplicity, the radiator in the IDA ICE model 
is assumed to be able to modulate its power by adjusting its part load 
ratio (PLR). The total heating power of all the radiators is 3220 W. Thus, 
the power constraint of the heating system is from 0 to 3220 W in the 
MPC. 

16 ≤ Ti ≤ 24 if t ∈ (23 : 00, 24 : 00)
16 ≤ Ti ≤ 24 if t ∈ (0 : 00, 7 : 00)
20 ≤ Ti ≤ 24 if t ∈ (7 : 00, 23 : 00)

(1) 

The electricity price profile is also needed for the MPC as an index for 
making decisions. It is generated from the historical electricity price 
from Nord Pool. The penalty cost for using electricity during peak hours 
is a predefined penalty profile that has two levels and is repeated daily. 
The electricity price profile and the peak hour penalty cost profile are 
given in Fig. 4 in Norwegian krone [NOK/kWh]. 

3. Methodology 

3.1. Grey-box model 

A considerable amount of research has already been done to inves
tigate suitable mono-zone grey-box models for MPC implementation in 

buildings [5,18,39–42]. However, a specific model structure in one 
piece of research is unlikely to be suitable for other buildings with 
different geometries and materials. Thus, selecting a suitable grey-box 
model structure for the MPC controller is the prerequisite of this 
study. A model structure that is too complex may lead to overfitting and 
increase the calculation cost drastically. A simple model structure can 
decrease the computational time for optimization but may lead to un
acceptable prediction performance. In the previous study [31] using the 
same building, the second-order 3R2C grey-box model has proven to be 
a suitable trade-off between model complexity and accuracy. Therefore, 

Fig. 3. Co-simulation setup between IDA ICE and MATLAB.  

Fig. 4. Electricity and peak hour penalty cost profile (from November to December).  

Fig. 5. 3R2C grey-box model.  
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our study also takes the 3R2C as the prediction model structure, which is 
presented in Fig. 5. The definition of parameters for the model is given in 
Table 2. 

The corresponding state-space model in Fig. 5 is given by: 
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(2)  

y(t)= [0 1]
[

Te(t)
Ti(t)

]

(3) 

The MATLAB system identification toolbox [43] is used to fit the 
parameters of the grey-box models. The linear state-space grey-box 
model is formulated in the innovation form, i.e., 

dx
dt

=Ax(t) + Bu(t) + Ke(t) (4)  

y(t)=Cx(t) + e(t) (5)  

where x is the state vector, A, B and C are the system matrices, u is the 
input vector (i.e., Ta, Isol, Qint, Qvent, Qh) and y is the output (i.e., indoor 
temperature, Ti). The stochastic model is an extension of deterministic 
model (K = 0) [13]. K is the disturbance matrix of the innovation form 
(Kalman gain) [44]. 

This study uses an optimization routine in two stages that combines a 
global optimization followed by a gradient-based optimization to avoid 
converging to a local optimum. Detailed information can be found in the 
previous study [31]. The first stage uses heuristic particle swarm opti
mization (PSO) to get a first estimation of parameter values. The second 
stage takes the gradient-based optimization function (greyest) of the 
MATLAB system identification toolbox to further polish the parameter 
values. The objective function f(x) of the optimization is defined as 
Equation (6), 

f (x)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

k=1

⃦
⃦
⃦
⃦yk − yk

∧
(θ)‖2

N

√
√
√
√
√

(6)  

where yk is the measurement output, while ŷk(θ) is the prediction of the 
model (with parameter set θ). 

The dataset in this study has two different time intervals (Ts). The 
dataset collected for the model training phase has a sampling time of 2.5 
min, while the sampling time for the dataset collected during the MPC 

co-simulation (operation phase) is 15 min, like the time interval of the 
MPC. The data collected during the operation phase is used to update the 
model parameters of the adaptive MPC controller. However, 15 min is a 
relatively long sampling time, which may be larger than the shortest 
time constant of the building thermal dynamics. Previous studies [31] 
have shown that this may prevent the identified parameter values from 
being physically plausible. In line with these two studies, a time shift, 
called anti-causal shift (ACS) [45], of the input is applied to the data 
collected during the operation phase (i.e., input delay = -Ts). It has 
proven to be beneficial for model identification with large Ts [31,45]. 

In the preliminary experimental MPC operation, the deterministic 
model shows similar prediction performance as the stochastic model. 
Therefore, the deterministic model is used when updating the parame
ters as it showed quicker convergence when updating the parameters. 

3.2. Optimal control problem formulation 

This study investigates the performance of the MPC controllers with 
two control objectives to make sure conclusions do not depend on the 
objective function.  

1) Objective 1 (Energy Savings): Minimal total electricity use of the 
heating system while minimizing indoor thermal discomfort at the 
same time.  

2) Objective 2 (Energy Cost Saving with Peak Reduction): Minimal total 
electricity cost and reduce electricity use during the peak hour of the 
grid while minimizing indoor thermal discomfort. The electricity 
spot price from Nord Pool and the historical weather data for 2019 
are used in this study. An MPC minimizing energy costs is usually 
called economic model predictive control in other studies. 

With these control objectives and the constraints defined in Section 
2, the optimal control problem can be formulated. As previously 
mentioned, the time step of each control decision is 15 min. The pre
diction horizon of the MPC controller is set to be 24 h (96 slots, N = 96). 
This prediction length is a typical value in MPC building applications 
[16,46,47]. The prediction length is also acceptable considering the 
computational cost. The equations of the optimization problem are 
given below. 

Case 1. 

argmin
Qh

∑N− 1

k=0
Qh[k] + ε1[k]Lε′

1[k] + ε2[k]Lε′
2[k] (7)   

Case 2. 

argmin
Qh

∑N− 1

k=0
ch[k]Qh[k] + ph[k]Qh[k] + ε1[k]Lε′

1[k] + ε2[k]Lε′
2[k] (8) 

Subject to 

Table 2 
The physical interpretation of the parameters of all grey-box models.  

Parameters Physical interpretation and unit 

Ti Temperature of the internal node (i.e., indoor air, furniture) [◦C]. 
Te Temperature of the external walls [◦C]. 
Ta The outdoor temperature [◦C]. 
Ci Heat capacity including the thermal mass of the air, the furniture [kWh/K]. 
Ce Heat capacity of the node external wall [kWh/K]. 
UAie Heat conductance between the building envelope and the interior [kW/K]. 
UAea Heat conductance between the outdoor and the building envelope [kW/K]. 
UAinf Heat conductance between the outdoor and the interior node (modeling components with negligible thermal mass, like windows and doors) [kW/K]. 
Qint Internal heat gain from artificial lighting, people, and electric appliances [kW]. 
Qh Heat gain delivered by the heat emitter [kW]. 
Isol Global solar irradiation on a horizontal plane [W/m2]. 
Ai The effective window area of the building corresponding to the node Ti [m2]. 
Ae The effective window area of the building corresponding to the node Te [m2].  
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x[k+ 1] =Fx[k] + Gu[k] + Ke[k], k ∈ NN− 1
0 (9)  

Ti[k] =Cx[k], k ∈ NN− 1
0 (10)  

Tlow[k] − ε1[k] ≤Ti[k], k ∈ NN− 1
0 (11)  

Ti[k] ≤Tup[k] + ε2[k], k ∈ NN− 1
0 (12)  

0≤Qh[k] ≤ Qh,max[k], k ∈ NN− 1
0 (13)  

0≤ ε1[k]; 0 ≤ ε2[k], k ∈ NN− 1
0 (14)  

where x[k] is the state vector in discrete-time, F, G and C are the discrete 
system matrices trained from the system identification process, u[k] is 
the input vector in discrete-time and y[k] is the output. K is the tuned 
steady Kalman gain of the model. Qh[k] is the calculated optimal heat 
power at each step in the prediction horizon, while Qh,max[k] is the max 
power of the heating system. ε1 [k] and ε2[k] are the slack variables of 
the soft constraints for the thermal comfort band. L is the weighting 
factor that is set to penalize thermal discomfort in the objective function. 
The soft constraints enable the solver to avoid infeasible optimization 
problems by allowing thermal comfort bands to be violated. ch[k] is the 
electricity price profile at each slot. ph[k] is the penalty cost for using 
electricity during peak hours. Ti[k] is the predicted indoor temperature 
from the prediction model. Tlow[k] and Tup[k] are the corresponding 
temperature boundaries inside the prediction horizon. The receding 
horizon is implemented in the MPC, so the above optimization problem 
is solved at each step (every 15 min) to get the optimal control decision. 
Then, the initial states of the control model and weather forecasts are 
updated with the receded prediction horizon. Thermal discomfort is not 
desirable. Thus, the penalty weight factor L of the slack variables is given 
with a large value. The baseline penalty weight factor L is set to 108 in 
this study, but L is also set at 106 in the sensitivity analysis. A solver that 
can solve quadratic programming optimization problems is needed due 
to the quadratic form of the slack variables ε1 and ε2. The toolbox 
YALMIP [48] in MATLAB is used for the optimization problem formu
lation, and Gurobi [49] is used to solve the optimization problem. 

3.3. Conventional and adaptive MPC 

This study uses two months of simulation to compare the perfor
mance between the conventional and adaptive MPCs. The conventional 
MPC is based on an LTI model, and the parameter values are kept un
changed during simulation. One primary objective of this study is to 
examine how the selection of the training data affects MPC performance. 
Thus, perfect weather forecast is assumed to exclude the variability of 

weather prediction to simplify the analysis. The conventional MPC has 
six variants using different LTI models trained on different periods. The 
FullWinter model is trained with the entire winter season data where the 
building is heated using intermittent temperature setpoints. There are 
two LTI models trained using the data from PRBS experiments of 
November and December, respectively, called PRBSNOV and PRBSDEC. 
There are another three LTI models trained using the data from inter
mittent on-off experiments of November and December and the last 
month of the heating season, meaning March. These variants are called 
ONOFFNOV, ONOFFDEC and ONOFFMAR, respectively. The two 
adaptive MPCs take the FullWinter model as the initialization model. 
The weather profile for each month is depicted in Fig. 6. 

It is unreasonable to use short training period data to update the 
model parameters as it leads the parameters to be completely unphysical 
or have large uncertainty. On the other hand, taking a long period of 
historical data for retraining is also not optimal since the adaptive MPC 
should be able to adapt the parameters for changing operating condi
tions. Pushed to the extreme, a very long retraining period will make the 
adaptive model converge towards an LTI model. Therefore, the length of 
the retraining period for updating the parameters is set to 7 days. Pre
liminary tests have shown that seven days of data using intermittent on- 
off heating leads to a model with physically plausible parameters and 
fair prediction performance. The cases of 14 days training period are 
added for comparison purposes. Given the duration of the retraining 
period, the adaptive MPC routines are not allowed to update parameters 
until the first m steps (i.e., m = 672 for 7 days training period) of 
simulation are completed. 

The Partially Adaptive MPC only updates the effective window area 
(Ai) in the parameter set of the model during the simulation. The Fully 
Adaptive MPC updates all the grey-box model parameters during 
simulation. The pseudo-code to update the model parameter using the 
Partially Adaptive MPC and Fully Adaptive MPC is presented in Algo
rithm 1. In this operation, θ represents the parameter being updated. 
Specifically, θ refers to Ai in the context of Partially Adaptive MPC, and 
encompasses all parameters (Ce, Ci, UAie, UAea, UAinf, Ae and Ai) in the 
case of Fully Adaptive MPC. A summary of the different cases is given in 
Table 3. 

The sliding accumulated error φ is the sum of absolute prediction 
errors, serving as the index for determining the need for a parameter 
update. The absolute prediction error represents the absolute difference 
between the indoor temperature measurement in IDA ICE at a given time 
step (Ti[k]*) and the indoor temperature predicted by the MPC for that 
time step (Ti[k]

p ) over the preceding n steps (i.e., n = 12, which is 3 h). 
The parameter updating routine is activated when φ exceeds a pre

determined threshold τ. The threshold is originally set τ = 5 Kh in this 
study. A lower τ means a lower tolerance for error, which can be tuned 
based on the application scenario. 

To investigate the influence of the training period and error 
threshold on the performance of adaptive MPC. The cases with τ = 2.5 
Kh and a training period of 14 days for updating the parameters with 
penalty weight factor L = 108 are also presented in the sensitivity 
analysis. Fig. 6. Weather profile for November, December and March.  

Table 3 
Case summary of experiments.  

Case Excitation Training Period 

FullWinter Intermittent on–off 11/01/2019 - 03/31/2020 
PRBSNOV PRBS 11/23/2019 - 11/30/2019 
PRBSDEC PRBS 12/24/2019 - 12/31/2019 
ONOFFNOV Intermittent on–off 11/01/2019 - 11/30/2019 
ONOFFDEC Intermittent on–off 12/01/2019 - 12/31/2019 
ONOFFMAR Intermittent on–off 03/01/2020 - 03/31/2020 
Partially Adaptive MPC operation During operation 
Fully Adaptive MPC operation During operation  
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Algorithm 1. Pseudo-code for the Adaptive MPC 

3.4. Key parameters and KPI 

The Fully Adaptive MPC updates all its parameters during simula
tion, and the time evolution of some key parameters of the model is 
monitored during the operation. These key parameters are the overall 
heat transfer coefficient (HTC), the thermal capacitances (Ci and Ce) and 
the dominant parameter for modeling the influence of the solar radia
tion, the effective window area (Ai). The overall heat transfer coefficient 
(HTC) is the total heat loss of the building in steady-state [31]. In a 
highly insulated and airtight building as considered in this study, heat 
conduction dominates the overall heat losses and this heat transfer 
process has good linear properties. Heat transfer by convection and 
long-wave radiation is nonlinear but is of secondary importance. The 
HTC is the combination of several resistances of the grey-box model. The 
definition of HTC for the 3R2C model is defined by Equation (15). A 
reference value for HTC is 85 W/K (identified by applying a step func
tion of the space-heating to the IDA ICE model). 

HTC =
1

1/UAie + 1/UAea
+ UAinf (15) 

The capacitances (Ci and Ce) are directly related to the building 
thermal dynamics. Based on ISO 13786:2017 [50], the reference value 
of the effective heat capacitance of the building (Ceff) is estimated to be 
3.9 kWh/K using daily period temperature variations. The Ceff can be 
used as a reference for the sum of the parameters Ci and Ce. They should 
not be equal but have the same order of magnitude. 

Regarding the KPIs for evaluating the MPC performance, the first test 
case (Energy Savings) takes the total energy use [kWh] and the thermal 
discomfort. The second case (Energy Cost Saving with Peak Reduction) 
considers the energy use during peak hours [kWh] and the total cost 
[NOK] combining the energy cost and the peak-hour penalty cost into 
the evaluation KPI. The thermal discomfort is quantified in Kelvin hours 
(Kh) outside the predefined thermal comfort band. 

4. Results 

This section compares the performance of the different MPC con
trollers for the two different control objectives. Therefore, the co- 
simulation results are evaluated successively based on the control 

objectives. The trained parameter values of the three LTI models are 
shown in Table 4. As can be seen, the HTC and Ai are significantly 
different for the LTI model identified using the FullWinter data than the 
two LTI models using the PRBS excitation signal. 

4.1. Energy savings (ES) 

Energy savings is the most basic control objective of this study. 
Figs. 7 and 8 present a selected period of the indoor temperature profile 
under the operation of the different MPC controllers using this control 
objective for L = 106 and L = 108 penalty factors, respectively. The total 
energy use and the thermal discomfort (61 days) of those different MPC 
controllers with different penalty factors are calculated so that the MPC 
controller performance can be quantitatively compared in Table 5. 

Results show that the FullWinter model makes inaccurate indoor 
temperature predictions, which causes the thermal comfort constraint to 
be frequently violated. The Partially Adaptive MPC shows a similar 
inaccurate prediction compared to the FullWinter MPC. The thermal 
comfort constraint is still frequently violated. With the lower penalty 
factor 106, the thermal discomfort of Partially Adaptive MPC is even 
larger than FullWinter MPC. These two models consume less energy 
compared to the other models (i.e., the Fully Adaptive MPC and the 
PRBS MPC) because they are less accurate, which causes the indoor 
temperature to drop below the minimum indoor temperature threshold. 
The heating system is switched on far too late in the morning, resulting 
in significant thermal discomfort. It indicates that the LTI grey-box 
model trained using the data from the full space-heating season may 
not be as suitable as the prediction model in MPC. 

PRBSNOV MPC and PRBSDEC MPC perform better than the Full
Winter and Partially Adaptive MPC models in terms of avoiding thermal 
discomfort, which can be clearly seen in Figs. 7 and 8. PRBSDEC MPC 
performs better than PRBSNOV MPC in terms of thermal comfort leading 
to a slightly higher energy use. The influence of the penalty factor on 
PRBSNOV MPC is more evident than on the PRBSDEC MPC. The per
formance of ONOFFNOV MPC and ONOFFDEC MPC are almost iden
tical. With the lower penalty factor 106, the thermal discomfort is 
slightly higher than PRBSDEC. With the higher penalty factor 108, the 
thermal discomfort is similar to PRBSDEC but the energy use is slightly 
lower. The ONOFFNOV and ONOFFDEC perform better than expected, 
they show even better performance compared to the model trained from 
PRBS excitation signal in November. This proves that intermittent on-off 
can also be a good choice for exciting the thermal dynamics of the 
building to obtain the data for training the parameters of the model. 

Though the paper [29] suggests that the end of the heating season is 
the most robust period for training the model, ONOFFMAR MPC per
formance is much worse than the LTI MPC that trained from the corre
sponding operation period (ONOFFNOV and ONOFFDEC). However, 
ONOFFMAR MPC performs much better than the FullWinter MPC, 
which indicates that the model trained from the data at the end of the 
heating season is more suitable than the full winter LTI model. All the 
results above prove that it is important to use a model that is trained 
with data generated from weather conditions similar to the period when 
the MPC will be operated. 

The Fully Adaptive MPC performs much better than the Partially 
Adaptive MPC in all KPIs due to more degrees of freedom to fit the model 

Table 4 
Trained parameter values of the LTI models.  

Case HTC [W/K] Ce [kWh/K] Ci [kWh/K] Ai [m2] 

FullWinter 81.42 4.03 0.33 6.09 
PRBSNOV 96.43 4.81 0.42 16.96 
PRBSDEC 94.25 4.93 0.41 15.94 
ONOFFNOV 85.19 4.09 0.46 9.43 
ONOFFDEC 88.76 4.26 0.44 15.60 
ONOFFMAR 84.77 4.59 0.47 4.36  
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parameters. The Fully Adaptive model performs the best among the 
MPCs in avoiding thermal discomfort, which can be clearly seen in 
Figs. 7 and 8. However, the lower thermal discomfort from Fully 
Adaptive MPC also results in higher energy consumption compared to 
good LTI MPCs like ONNOFFNOV and ONNOFFDEC MPCs. 

Table 6 is the sensitivity analysis of the training period and error 
threshold on the performance of Fully Adaptive MPC. The cases involve 
two different training periods and error tolerances: the first case has a 
training period of one week with an error tolerance of τ = 2.5, and the 
second case has a training period of two weeks with an error tolerance of 
τ = 5. 

From Tables 6 and it can be noticed that with the lower error 
tolerance τ = 2.5 for the Fully Adaptive MPC, the results are almost 

identical to the condition with error tolerance τ = 5. However, with a 
longer training period of two weeks of data under MPC operation, the 
thermal discomfort significantly increases, which indicates that a too- 
long training period may not be suitable for the Fully Adaptive MPC. 

4.2. Energy cost saving with peak reduction (EMPCPR) 

The energy cost saving with the peak reduction case is generated by 
adding a penalty for energy use during the peak hour to the electricity 
price. Figs. 9 and 10 show the indoor temperature profile using the 
different MPC controllers with the energy cost saving and peak power 
reduction objective for both L = 106 and L = 108 penalty factors. The 
quantitatively calculated comparison results of MPC controllers 

Fig. 7. Close-up of the indoor temperature profile under the operation of different MPC controllers with energy savings objective, L = 106.  

Fig. 8. Close-up of the indoor temperature profile under the operation of different MPC controllers with energy savings objective, L = 108.  
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performance are shown in Table 7. The peak hour penalty is added to the 
hourly electricity price profile to reconstruct the new cost profile. The 
electricity energy cost is still the energy used at each time step multi
plied by the corresponding electricity price. The total cost is the electric 
energy cost plus the peak hour penalty cost. 

The MPC controllers switch off the heating during high price periods 
(e.g., at about 770 h) to decrease the total cost, which can be seen from 
the decrease in the indoor temperature. 

Results show that the FullWinter and the Partially Adaptive MPCs are 
still performing poorly in the case of EMPCPR. Large thermal discomfort 
is still occurring due to the inaccurate prediction of the model. It can be 
clearly seen in Figs. 9 and 10 that the two MPC controllers choose to 
switch off the controller at the high price periods, even though the 
minimum indoor temperature constraint is violated. It consolidates the 
conclusion based on the previous two cases. An LTI model trained from 
full winter data is not appropriate to be used as the prediction model for 
MPC control. Only updating the effective window area of the FullWinter 
model leads to higher thermal discomfort. The reason is that the esti
mated effective area Ai of the Partially Adaptive MPC is higher than the 
FullWinter MPC in most of the operation time, which leads to a higher 
heat gain from solar radiation. In other words, the HTC value of the 

FullWinter MPC is lower than the reference HTC value of the IDA ICE 
building, causing an underestimated heating demand. It neutralizes the 
effect of underestimated heating demand to a certain degree. Therefore, 
the correction of solar heat gain from the Partially Adaptive MPC has a 
negative impact on thermal comfort for this case study. The Partially 
Adaptive is not able to preheat the building enough because the control 
model overpredicts the solar gain which causes a higher thermal 
discomfort level. 

Similar to the previous case, the PRBSDEC MPC performs slightly 
better than the PRBSNOV MPC in terms of thermal comfort. However, 
the PRBSDEC MPC causes an increased total cost and more peak hour 
electricity usage. In general, the two models generally have much better 
performance compared to the FullWinter and the Partially Adaptive 
MPCs. With the lower penalty factor 106, the thermal discomfort of 
ONOFFDEC MPC is slightly higher than PRBSDEC, while ONOFFNOV 
MPC has a slightly lower thermal discomfort compared to PRBSDEC. The 
total energy costs of ONOFFNOV and ONOFFDEC MPC are lower. The 
ONOFFNOV and ONOFFDEC MPC also perform better than expected in 
the EMPCPR case. With the higher penalty factor 108, the performance 
of ONOFFNOV MPC and ONOFFDEC MPC are also almost identical. 
They have lower thermal discomfort compared to the PRBSDEC and 

Table 5 
Summary of the MPC performance for the energy saving (November and December).  

Case Energy Use [kWh] (L=106) Thermal Discomfort [Kh] (L=106) Energy Use [kWh] (L=108) Thermal Discomfort [Kh] (L=108) 

FullWinter 319.54 453.93 328.56 210.74 
PRBSNOV 327.15 216.76 334.77 164.93 
PRBSDEC 336.93 96.84 342.51 86.30 
ONOFFNOV 337.79 112.60 341.11 85.40 
ONOFFDEC 336.51 123.65 341.83 90.56 
ONOFFMAR 326.56 198.10 332.79 185.57 
Partially Adaptive 319.56 462.61 326.32 247.05 
Fully Adaptive 341.75 79.74 353.89 50.68  

Table 6 
Summary sensitivity analysis of the Fully Adaptive MPC performance for the ES case (November and December).   

Fully Adaptive MPC Fully Adaptive MPC (half error) Fully Adaptive MPC (two weeks) Penalty Factor (L) 

Energy Use [kWh] 893.62 899.38 886.34 108 

Thermal Discomfort [Kh] 72.04 73.51 132.44 108  

Fig. 9. Close-up of the indoor temperature profile under the operation of different MPC controllers with energy cost saving and peak reduction, L = 106.  
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PRBSNOV with even lower energy costs. This proves that intermittent 
on-off can also be a good choice for exciting the thermal dynamics of the 
building to obtain the data for training the parameters of the model. Like 
the previous ES case, ONOFFMAR MPC performs much worse than the 
LTI MPC that was trained from the corresponding operation period and 
better than the FullWinter MPC and Partially Adaptive MPC. This con
firms that the model trained from the data at the end of the heating 
season is more suitable for the full winter LTI. However, all the results 
above affirm again the importance of using a model that is trained with 
data generated from weather conditions similar to the period when the 
MPC will be operated. 

The EMPCPR case clearly shows that the Fully Adaptive MPC out
performs the other MPCs in avoiding thermal discomfort. The best MPC 
based on LTI that could compete with the Fully Adaptive MPC was the 
ONOFFDEC MPC. In the EMPCPR case with the lower penalty factor L =
106, the Fully Adaptive MPC gives better performance for most KPIs 
compared to ONOFFDEC except for slightly higher energy costs. In the 
EMPCPR case with the higher penalty factor L = 108, the thermal 

discomfort of Fully Adaptive MPC is lower than ONOFFDEC MPC. 
However, the total energy cost and energy use during peak hours are 
higher. The main reason is that the Fully Adaptive MPC operates with 
the FullWinter model during the first seven days before it is allowed to 
perform a first adaptation of the model parameters. 

Table 8 is the sensitivity analysis of the training period and the error 
threshold for the EMPCPR case. The thermal discomfort is reduced with 
the lower error tolerance τ = 2.5, the total cost is also slightly increased 
compared to the baseline Fully Adaptive MPC (error tolerance τ = 5). 
The Fully Adaptive MPC updates parameters based on two weeks of data 
and performs worse than the baseline Fully Adaptive MPC in all KPIs, 
which confirms again that a long training period may not be suitable for 
Fully Adaptive MPC. 

4.3. Time evolution of the model parameters 

The physical plausible properties of the parameters are also moni
tored in this study. This section presents the time evolution of the 

Fig. 10. Close-up of the indoor temperature profile under the operation of different MPC controllers with energy cost saving and peak reduction, L = 108.  

Table 7 
Results summary of MPC controllers’ performance for energy cost saving (EMPCPR) case (November and December).  

Case Energy Cost 
[kWh] 
(L=106) 

Total Cost 
[NOK] 
(L=106) 

Thermal 
Discomfort [Kh] 
(L=106) 

Peak Hour 
Energy [kWh] 
(L=106) 

Energy Cost 
[kWh] 
(L=108) 

Total Cost 
[NOK] 
(L=108) 

Thermal 
Discomfort [Kh] 
(L=108) 

Peak Hour 
Energy [kWh] 
(L=108) 

FullWinter 328.67 405.38 312.18 38.36 327.53 396.37 200.11 34.42 
PRBSNOV 330.36 384.13 169.55 26.89 345.13 420.98 96.51 37.92 
PRBSDEC 338.94 403.31 81.12 32.19 348.70 430.05 44.98 40.67 
ONOFFNOV 342.73 373.64 73.06 15.46 352.35 387.27 34.63 17.46 
ONOFFDEC 343.09 375.22 84.28 16.06 353.59 389.76 37.96 18.09 
ONOFFMAR 319.92 382.44 180.20 31.26 337.76 414.03 133.54 38.13 
Partially Adaptive 328.17 408.80 311.81 40.31 325.81 397.32 220.24 35.76 
Fully Adaptive 350.06 379.77 45.13 14.86 355.80 410.36 30.51 27.28  

Table 8 
Summary sensitivity analysis of the Fully Adaptive MPC performance for the EMPCPR case (November and December).   

Fully Adaptive MPC Fully Adaptive MPC (half error) Fully Adaptive MPC (two weeks) Penalty Factor (L) 

Energy Cost [NOK] 355.80 365.06 358.81 108 

Total Cost [NOK] 410.36 418.20 440.62 108 

Thermal Discomfort [Kh] 30.51 17.99 48.15 108 

Peak Hour Energy [kWh] 27.28 26.56 40.90 108  
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updated parameters with the high penalty value L = 108. Fig. 11 pre
sents the history of the HTC value. The values of the FullWinter MPC and 
the Partially Adaptive MPC are overlapped due to the identical value. 
The results of the Fully Adaptive MPC have been distinguished with 
different line styles for the two different test cases. It can be seen that the 
Fully Adaptive MPC has two significant parameter updates during the 
simulation period, but the time when these updates occur is not identical 
depending on the objective function. The obtained HTC values for the 
Fully Adaptive MPC are within the range to be physically plausible, the 
HTC difference being within 10%. The results indicate that the Fully 
Adaptive MPC training the parameter using seven days of data can give 
satisfactory prediction performance with reasonable parameter values 
for a relatively long simulation period and does not need to update the 
parameters frequently. 

Fig. 12 shows the history of parameter Ai. The results of the three 
cases are also distinguished with different line styles. The results show 
that the Ai updating history of Fully Adaptive MPC follows a similar 
trend to the Partially Adaptive MPC by first increasing in November and 
then decreasing in December. However, the updating history of Ai for 
the Fully Adaptive MPC is larger in amplitude compared to the Partially 
Adaptive MPC. Furthermore, parameter Ai is updated very frequently by 
the Partially Adaptive MPC, which indicates that the prediction error 
from the model is constantly large during the simulation. This confirms 

the previous conclusion regarding the FullWinter MPC and Partially 
Adaptive MPC: the FullWinter model cannot provide satisfactory pre
diction performance and the model cannot be corrected by only 
updating parameter Ai. The Fully Adaptive only updates Ai two times 
during simulation and the value is also changing significantly. It in
dicates that parameter Ai may not play a dominant role in the prediction 
performance over a long timescale, though it has a significant influence 
on short-term temperature based on existing research [18,26]. 

Fig. 13 presents the updating history of the sum of capacitances Ce 
and Ci, named Ceff. Results show that the values of the Fully Adaptive 
MPC are within the physically plausible range compared to the reference 
value Ceff of 3.9 kWh/K, although the values are different for the three 
cases. However, it is worth mentioning that the value of Cefff is also 
correlated with the value of the HTC and Ai. Considering the fact that the 
model only takes seven days of data under MPC operation to update the 
parameters, it is reasonable that the obtained value of HTC and Ceff has 
some uncertainties in the value as long as it can deliver decent predic
tion performance. 

5. Discussion 

The complementary discussion in this section is based on the analysis 
of the results.  

• The Fully Adaptive MPC gives the best controller performance 
among the MPC controllers in this study. After the Fully Adaptive 
MPC updates parameters for the first time, the violation of the 
thermal constraint is significantly reduced. Furthermore, the results 
also show that the obtained parameters during simulation are 
different for the two test cases but are within a reasonable range. The 
explanation for that is the different timing and different data used to 
update the parameters. The performance of Fully Adaptive MPC also 
confirms that it is possible to use a data period of medium length (7 
days) under regular operational conditions to train the model pa
rameters as long as the parameters can be updated continually dur
ing operation. The sensitivity analysis also shows that using a longer 
period of 14 days could also lead to worse MPC control results 
compared to the one trained with 7 days data. A lower error toler
ance value can decrease the thermal discomfort but with a higher 
cost. Finding a good balance between energy cost and thermal 
discomfort level is important in real operations. 

• The analysis is based on virtual experiments and the limited simu
lation length of two months for the virtual experiments is due to the 
long co-simulation time. The co-simulation was operated on a 

Fig. 11. History of the HTC value during the two months of MPC operation.  

Fig. 12. History of the Ai value during the two months of MPC operation.  Fig. 13. History of the Ceff value during the two months of MPC operation.  
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workstation with an Intel Xeon E5-2697 18-core CPU clocked at 2.30 
GHz, 64 GB RAM running a 64-bit version of Windows 10 Enterprise. 
The co-simulation of two months takes approximately 20 h on 
average to be completed. The EMPC case of the Fully Adaptive MPC 
is taken as an example to illustrate the time consumption. The total 
duration of the virtual experiment is 18.8 h; the total time for 
updating the parameters is 95 s, and the time for MPC optimization is 
18.38 h. The remaining time is spent for co-simulation and data 
exchange with IDA ICE. The co-simulation for the Partially Adaptive 
MPC can take much longer time due to frequent updates of the 
parameters.  

• Due to the inherent modeling simplifications in BPS, the conclusion 
might be different for real field experiments. For generalization 
purposes, results should be reproduced in other simulation platforms 
or on a real experiment performed over a long period of time. Many 
MPC studies using field measurements are based on a short period of 
experiments, see e.g. Ref. [7]. The analysis can also be repeated for 
other building types or other thermal performances of the building 
envelope. The test building in our study is highly insulated so that 
solar gains contribute significantly to the space-heating and the air 
infiltrations are limited. With an older building, the situation would 
be the opposite (i.e., the insulation level would be lower and air 
infiltrations higher), which would give a different dependence on the 
variations in the weather conditions during the space-heating season.  

• The internal gains are assumed known in our study. However, they 
are prone to uncertainty and are variable by nature. Therefore, the 
need for model adaptation may also be driven by internal gains [20].  

• The MPC in this study uses a mono-zone model. It has been explained 
that this choice is relevant for the building test case in this study. 
However, a mono-zone model may not be sufficient for all types of 
buildings and building operations (e.g., in residential buildings, 
bedrooms may have a different temperature than the living areas). If 
a multi-zone MPC needs to be designed, new criteria to update the 
parameters also need to be developed.  

• The grey-box models investigated in our study are all linear. It means 
that the entire building thermal dynamics has been linearized. This 
may explain the limited extrapolation capabilities of LTI models and 
the superiority of the Fully Adaptive MPC for different weather 
conditions. In future work, more complex grey-box models, such as 
non-linear models, could be considered as an alternative to improve 
the extrapolation capabilities. 

6. Conclusion 

In this study, the MPC uses the thermal mass of the building as short- 
term thermal storage to perform DR. The paper investigates the 
robustness of MPC based on LTI grey-box models operated over a long 
period of time and the need for adaptive models. The performance of 
MPC based on LTI models and two adaptive MPC controllers based on a 
linear grey-box model is compared for two different control objectives. 
The model performance is assessed from the degree of completion to 
fulfill the defined objectives and the avoidance of thermal discomfort. 
This study uses a highly insulated detached house simulated using the 
BPS software IDA ICE as the emulator. The IDA ICE model is coupled 
with MATLAB in a co-simulation setup. The control signal is calculated 
by the MPC controller implemented in MATLAB and sent to the heating 
system so that the indoor temperature of the building in IDA ICE can be 
controlled. 

Regarding MPC based on LTI grey-box models, results show that an 
LTI model trained using the data from the entire space-heating season 
(FullWinter model) is not suitable to be used as the prediction model for 
a long period of operation in MPC. It shows that a longer training period 
is not always a synonym for better model performance. The MPC based 
on two LTI models training using two short periods of data using a PRBS 
excitation (PPRBSNOV MPC and PRBSDEC MPC) generally performs 
better than the FullWinter if the training period is close enough to the 

period where the MPC is in use. It is suggested in Ref. [29] that the end of 
heating season to train the model for MPC for the winter. The perfor
mance of ONOFFMAR performs much better compared to FullWinter, 
but still worse than the models trained with November and December 
data. This confirms that if an LTI grey-box model is used in MPC, it 
should be trained with data generated during similar weather conditions 
to the period when the MPC will be operated, but the resulting LTI model 
cannot be accurate enough for the entire space-heating season. The 
performance of ONOFFNOV and ONOFFDEC is better than expected, 
which proves that intermittent on-off signals can also be a good selection 
for exciting the thermal dynamics of the model to collect the training 
data. This needs to be validated in more in building MPC scenarios. 

Regarding adaptive MPC, only updating the window area of the 
model (Partially Adaptive MPC) is not enough to correct the baseline LTI 
model and it sometimes even has negative effects on the results. The 
Fully Adaptive MPC outperforms the two PRBS MPCs. Even if the ther
mal dynamics of the building envelope is less non-linear than solar gains 
according to the weather conditions, it demonstrates the need to update 
all the model parameters if this model is to be used during the entire 
space-heating season. The Fully Adaptive model gives more accurate 
prediction, which causes the thermal discomfort to be significantly 
reduced. 

For further work, it would be interesting to test the adaptive MPC 
controller performance for other building types under other simulation 
platforms or conduct the experiment in a real building to generalize the 
conclusions of this work. The influence of the stochastic behaviour of 
occupants on the results should also be investigated. Finally, the study 
could also be repeated using linear black-box models. 
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